
The Dynamic Bloom Filters
Deke Guo, Member, IEEE, Jie Wu, Fellow, IEEE, Honghui Chen, Ye Yuan, and Xueshan Luo

Abstract—A Bloom filter is an effective, space-efficient data structure for concisely representing a set, and supporting approximate

membership queries. Traditionally, the Bloom filter and its variants just focus on how to represent a static set and decrease the false

positive probability to a sufficiently low level. By investigating mainstream applications based on the Bloom filter, we reveal that

dynamic data sets are more common and important than static sets. However, existing variants of the Bloom filter cannot support

dynamic data sets well. To address this issue, we propose dynamic Bloom filters to represent dynamic sets, as well as static sets and

design necessary item insertion, membership query, item deletion, and filter union algorithms. The dynamic Bloom filter can control the

false positive probability at a low level by expanding its capacity as the set cardinality increases. Through comprehensive mathematical

analysis, we show that the dynamic Bloom filter uses less expected memory than the Bloom filter when representing dynamic sets with

an upper bound on set cardinality, and also that the dynamic Bloom filter is more stable than the Bloom filter due to infrequent

reconstruction when addressing dynamic sets without an upper bound on set cardinality. Moreover, the analysis results hold in stand-

alone applications, as well as distributed applications.

Index Terms—Bloom filters, dynamic Bloom filters, information representation.

Ç

1 INTRODUCTION

INFORMATION representation and processing of member-
ship queries are two associated issues that encompass the

core problems in many computer applications. Representa-
tion means organizing information based on a given format
and mechanism such that information is operable by a
corresponding method. The processing of membership
queries involves making decisions based on whether an
item with a specific attribute value belongs to a given set. A
standard Bloom filter (SBF) is a space-efficient data
structure for representing a set and answering membership
queries within a constant delay [1]. The space efficiency is
achieved at the cost of false positives in membership
queries, and for many applications, the space savings
outweigh this drawback when the probability of an error
is sufficiently low.

The SBF has been extensively used in many database

applications [2], for example, the Bloom join [3]. Recently, it

has started receiving more widespread attention in net-

working literature [4]. An SBF can be used as a summariz-

ing technique to aid global collaboration in peer-to-peer

(P2P) networks [5], [6], [7], support probabilistic algorithms

for routing and locating resources [8], [9], [10], [11], and

share Web cache information [12]. In addition, SBFs have

great potential for representing a set in main memory [13] in
stand-alone applications. For example, SBFs have been used
to provide a probabilistic approach for explicit state model
checking of finite-state transition systems [13], to summar-
ize the contents of stream data in memory [14], [15], to store
the states of flows in the on-chip memory at networking
devices [16], and to store the statistical values of tokens to
speed up the statistical-based Bayesian filters [17].

The SBF has been modified and improved from different
aspects for a variety of specific problems. The most
important variations include compressed Bloom filters
[18], counting Bloom filters [12], distance-sensitive Bloom
filters [19], Bloom filters with two hash functions [20], space-
code Bloom filters [21], spectral Bloom filters [22], general-
ized Bloom filters [23], Bloomier filters [24], and Bloom
filters based on partitioned hashing [25]. Compressed Bloom
filters can improve performance in terms of bandwidth
saving when an SBF is passed on as a message. Counter
Bloom filters deal mainly with the item deletion operation.
Distance-sensitive Bloom filters, using locality-sensitive
hash functions, can answer queries of the form, “Is x close
to an item of S?” Bloom filters with two hash functions use a
standard technique in hashing to simplify the implementa-
tion of SBFs significantly. Space-code Bloom filters and
spectral Bloom filters focus on multisets, which support
queries of the form, “How many occurrences of an item are
there in a given multiset?” The SBF and its mainstream
variations are suitable for representing static sets whose
cardinality is known prior to design and deployment.

Although the SBF and its variations have found suitable
applications in different fields, the following three obstacles
still lack suitable and practical solutions:

1. For stand-alone applications that know the upper
bound on set cardinality for a dynamic set in
advance, a large number of bits are allocated for an
SBF to represent all possible items of the dynamic set
at the outset. This approach diminishes the space

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

. D. Guo, H. Chen, and X. Luo are with the Key Laboratory of C4ISR
Technology, National University of Defense Technology, Changsha
410073, China.
E-mail: {guodeke, chh0808}@gmail.com, xsluo@nudt.edu.cn.

. J. Wu is with the Department of Computer and Information Sciences,
Temple University, 1805 N. Borad Street, Philadelphia, PA 19122.
E-mail: jiewu@temple.edu.

. Y. Yuan is with the Institute of Computer Systems, Northeastern
University, 132#, Shen Yang City, Liao Ning Province 110004, China.
E-mail: linuxyy@gmail.com.

Manuscript received 26 May 2007; revised 19 July 2008; accepted 10 Feb.
2009; published online 18 Feb. 2009.
Recommended for acceptance by D. Gunopulos
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-05-0239.
Digital Object Identifier no. 10.1109/TKDE.2009.57.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

efficiency of the SBF, and should be replaced by new
Bloom filters which always use an appropriate
number of bits as set cardinality changes.

2. For stand-alone applications that do not know the
upper bound on set cardinality of a dynamic set in
advance, it is difficult to accurately estimate a
threshold of set size and assign optimal parameters
to an SBF in advance. In the event that the cardinality
of the dynamic set exceeds the estimated threshold
gradually, the SBF might become unusable due to a
high false positive probability.

3. For distributed applications, all nodes adopt the
same configuration in an effort to guarantee the
interoperability of SBFs between nodes. In this case,
all nodes are required to reconstruct their local SBFs
once the set size of any node exceeds a threshold
value at the cost of large (sometimes huge) overhead.
In addition, this approach requires that the nodes
with small sets must sacrifice more space so as to be
in accordance with nodes with large sets, hence
reducing the space efficiency of SBFs and causing
large transmission overhead.

The SBF and variants do not take dynamic sets into
account. To address the three obstacles, we propose
dynamic Bloom filters (DBF) to represent a dynamic set,
instead of rehashing the dynamic set into a new filter as the
set size changes [26]. DBF can control the false positive
probability at a low level by adjusting its capacity1 as the set
cardinality changes. We then compare the performances of
SBF and DBF in three categories of stand-alone applications,
which feature two different types of sets: static sets with
known cardinality, and dynamic sets with or without an
upper bound on cardinality. Moreover, we evaluate the
performance of DBFs in distributed applications. The major
advantages of DBF are summarized as follows:

1. In stand-alone applications, a DBF can enhance its
capacity on-demand via an item insertion operation.
It can also control the false positive probability at an
acceptable level as set cardinality increases. DBFs can
shorten their capacities as the set cardinality de-
creases through item deletion and merge operations.

2. In distributed applications, DBFs always satisfy the
requirement of interoperability between nodes when
handling dynamic sets and occupying a suitable
amount of memory to avoid unnecessary waste and
transmission overhead.

3. In stand alone, as well as distributed applications,
DBFs use less expected memory than SBFs when
dealing with dynamic sets that have an upper
bound on set cardinality. DBFs are also more stable
than SBFs due to infrequent reconstruction when
dealing with dynamic sets that lack an upper bound
on set cardinality.

The rest of this paper is organized as follows: Section 2
surveys standard Bloom filters and presents the algebra
operations on them. Section 3 studies the concise represen-
tation and approximate membership queries of dynamic

sets. Section 4 evaluates the performance of DBFs in stand-
alone, as well as distributed applications. Section 5
concludes this work.

2 CONCISE REPRESENTATION AND MEMBERSHIP

QUERIES OF STATIC SETS

2.1 Standard Bloom Filters

A Bloom filter for representing a set X ¼ fx1; . . . ; xng of
n items is described by a vector of m bits, initially all set to 0.
A Bloom filter uses k independent hash functions h1; . . . ; hk
to map each item of X to a random number over a range
f1; . . . ;mg [1], [4] uniformly. For each item x of X, we define
its Bloom filter address as BfaddressðxÞ, consisting of hiðxÞ
for 1 � i � k, and the bits belonging to BfaddressðxÞ are set
to 1 when inserting x. Once the set X is represented as a
Bloom filter, to judge whether an element x belongs to X,
one just needs to check whether all the hiðxÞ bits are set to 1.
If so, then x is a member ofX (however, there is a probability
that this could be wrong). Otherwise, we assume that x is not
a member ofX. It is clear that a Bloom filter may yield a false
positive due to hash collisions, for which it suggests that an
element x is in X even though it is not. The reason is that all
indexed bits were previously set to 1 by other items [1].

The probability of a false positive for an element not in
the set can be calculated in a straightforward fashion, given
our assumption that hash functions are perfectly random.
Let p be the probability that a random bit of the Bloom filter
is 0, and let n be the number of items that have been added
to the Bloom filters. Then, p ¼ ð1� 1=mÞn�k � e�n�k=m as
n� k bits are randomly selected, with probability 1=m in
the process of adding each item. We use fBFm;k;n to denote the
false positive probability caused by the ðnþ 1Þth insertion,
and we have the expression:

fBFm;k;n ¼ ð1� pÞ
k � ð1� e�k�n=mÞk: ð1Þ

In the remainder of this paper, the false positive
probability is also called the false match probability. We can
calculate the filter size and number of hash functions given
the false match probability and the set cardinality according
to (1). From [1], we know that the minimum value of fBFm;k;n
is 0:6185m=n when k ¼ ðm=nÞ ln 2. In practice, of course, k
must be an integer, and smaller k might be preferred since
that would reduce the amount of computation required.

For a static set, it is possible to know the whole set in
advance and design a perfect hash function to avoid hash
collisions. In reality, an SBF is usually used to represent
dynamic sets as well as static sets. Therefore, it is impossible
to know the whole set and design k perfect hash functions
in advance. On the other hand, different perfect hash
functions used by an SBF may cause hash collisions. Thus,
the perfect hash functions are not suitable for overcoming
hash collisions in SBFs in theory, as well as practice.

On the other hand, a static set is typically not allowed to
perform data addition and deletion operations once it is
represented by an SBF. Thus, the bit vectors of the SBF will
stay the same over time, and then, the SBF can correctly
reflect the set. Therefore, the membership queries based on
the SBF will not yield a false negative in this scenario.
However, the SBF must commonly handle a dynamic set that
is changing over time, with items being added and deleted.

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 121

1. The capacity of a filter is defined as the largest number of items which
could be hashed into the filter such that the false match probability does not
exceed a given upper bound.

In order to support the data deletion operation, an SBF
hashes the item to be deleted and resets the corresponding
bits to 0. It may, however, set a location to 0, which is also
mapped by other items. In such a case, the SBF no longer
correctly reflects the set and will produce false negative
judgments with high probability. To address this problem,
Fan et al. introduced counting Bloom filters (CBFs) [12].
Each entry in the CBF is not a single bit but rather a small
counter that consists of several bits. When an item is added,
the corresponding counters are incremented; when an item
is deleted, the respective counters are decremented. The
experimental results and mathematical analysis show that
four bits for each counter is large enough to avoid
overflows [12].

2.2 Algebra Operations on Bloom Filters

We use two standard Bloom filters, BF ðAÞ and BF ðBÞ, as
the representations of two different static sets A and B,
respectively.

Definition 1 (Union of standard Bloom filters). Assume that
BF ðAÞ and BF ðBÞ use the same m and hash functions. Then,
the union of BF ðAÞ and BF ðBÞ, denoted as BF ðCÞ, can be
represented by a logical “or” operation between their bit
vectors.

Theorem 1. If BF ðA [BÞ; BF ðAÞ, and BF ðBÞ use the same m
and hash functions, then BF ðA [BÞ ¼ BF ðAÞ [BF ðBÞ.

Proof. Assume that the number of hash functions is k. We
choose an item y from set A [B randomly, and y must
also belong to set A or B. Bits hashiðyÞ of BF ðA [BÞ are
set to 1 for 1 � i � k, and at the same time, bits hashiðyÞ
of BF ðAÞ or BF ðBÞ are set to 1; thus, BF ðAÞ½hashiðyÞ� [
BF ðBÞ½hashiðyÞ� are also set to 1. On the other hand, we
chose an item x from set A or B randomly, and said x

also belongs to set A [B. Bits hashiðxÞ of BF ðAÞ [
BF ðBÞ are set to 1 for 1 � i � k, and at the same time,
bits hashiðxÞ of BF ðA [BÞ are also set to 1. Thus,
BF ðA [BÞ½i� ¼ BF ðAÞ½i� [BF ðBÞ½i� for 1 � i � m. The-
orem 1 is proved to be true. tu

Theorem 2. The false positive probability of BF ðA [BÞ is not
less than that of both BF ðAÞ and BF ðBÞ. At the same time,
the false positive probability of BF ðAÞ [BF ðBÞ is greater
than or equal to that of BF ðAÞ as well as BF ðBÞ.

Proof. Assume that the sizes of sets A;B, and A [B are
na; nb, and nab, respectively. According to (1), we can
calculate the false positive probability for BF ðAÞ; BF ðBÞ,
and BF ðA [BÞ.

In fact, given the same k and m, (1) is a monotonically
increasing function of n. It is true that jA [Bj �
maxðjAj; jBjÞ; thus, nab is not less than na and nb. We
could infer that the false positive probability of BF ðA [
BÞ is not less than that of BF ðAÞ and BF ðBÞ. According
to Theorem 1, we know that BF ðA [BÞ ¼ BF ðAÞ [
BF ðBÞ; thus, the false positive probability of BF ðAÞ [
BF ðBÞ is also not less than the value of BF ðAÞ, as well as
BF ðBÞ. Theorem 2 is proven to be true. tu

Definition 2 (Intersection of Bloom filters). Assume that
BF ðAÞ and BF ðBÞ use the same m and hash functions. Then,
the intersection BF ðAÞ and BF ðBÞ, denoted as BF ðCÞ, can be

represented by a logical “and” operation between their bit
vectors.

Theorem 3. If BF ðA \BÞ; BF ðAÞ, and BF ðBÞ use the same m
and hash functions, then BF ðA \BÞ ¼ BF ðAÞ \BF ðBÞ
with probability ð1� 1=mÞk

2�jA�A\Bj�jB�A\Bj.

Proof. Assume that the number of hash functions is k. We can
derive (2) according to Definitions 1, 2, and Theorem 1:

BF ðAÞ \BF ðBÞ ¼ ðBF ðA�A \BÞ \BF ðB�A \BÞÞ
[BF ðA \BÞ:

ð2Þ

In fact, the items of set A \B contribute the same bits
whose value is 1 to Bloom filters BF ðA \BÞ and
BF ðAÞ \BF ðBÞ. According to (2), it is easy to derive
that BF ðAÞ \BF ðBÞ equals to BF ðA \BÞ only if
BF ðA�A \BÞ \BF ðB�A \BÞ ¼ 0.

For any item z 2 ðB�A \BÞ, the probability that bits

hash1ðzÞ; . . . ; hashkðzÞ of BF ðA�A \BÞ are 0 should be

pk ¼ ð1� 1=mÞk
2�jA�A\Bj. Thus, we can infer that the

probability that BF ðB�A \BÞ \BF ðA�A \BÞ ¼ 0

should be ð1� 1=mÞk
2�jA�A\Bj�jB�A\Bj. Theorem 3 is

true. tu

2.3 Related Works

The most closely related work is split Bloom filters [27].
They increase their capacity by allocating a fixed s�m bit
matrix instead of an m-bit vector as used by the SBF to
represent a set. A certain number of s filters, each with m
bits, are employed and uniformly selected when inserting
an item of the set. The false match probability increases as
the set cardinality grows. An existing split Bloom filter must
be reconstructed using a new bit matrix if the false match
probability exceeds an upper bound. In practice, the split
Bloom filters also need to estimate a threshold of set
cardinality, and encounter the same problems faced by SBF.
Although dynamic Bloom filters adopt a similar structure as
split Bloom filters, they are different in the following
aspects. First, split Bloom filters always consume s�m bits
and waste too much memory before the set cardinality
reaches ðm� ln 2Þ=k, whereas dynamic Bloom filters allo-
cate memory in an incremental manner. Second, split Bloom
filters do not support the data deletion operation, which is
required in order to really support dynamic sets, whereas
dynamic Bloom filters do support dynamic sets. Third,
dynamic Bloom filters propose dedicated solutions for four
different scenarios, as shown in Section 4.

Another related work is scalable Bloom filters [28], which
address the same problem and adopt a similar solution
proposed by DBFs [26]. A scalable Bloom filter also employs
a series of SBFs in an incremental manner, but uses a
different method to allocate memory for each SBF. It
allocates m� ai�1 bits for its ith SBF, where a is a given
positive integer and 1 � i � s, while a DBF allocates m bits
for each DBF. It achieves a lower false positive probability
than a DBF that holds the same number of SBFs by using
more memory, but suffers from a drawback due to the use
of heterogeneous SBFs featuring different sizes and hash
functions. It causes large overhead due to the need to

122 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

calculate the Bloom filter address for items in each SBF
when performing a membership query operation. In a DBF,
the Bloom filter address of items in each SBF is the same.
This makes it possible to optimize the storage and retrieval
of a DBF by using the bit slice approach, as shown in
Section 4.5. On the other hand, it also lacks an item deletion
operation and solutions for dedicated application scenarios.

3 CONCISE REPRESENTATION AND MEMBERSHIP

QUERIES OF DYNAMIC SET

DBF focuses on addressing dynamic sets with changing
cardinality rather than static sets, which were addressed by
the previous version. It should be noted that DBFs can
support static sets. Throughout this paper, an SBF is called
active only if its false match probability does not reach a
designed upper bound; otherwise, it is called full. Let nr be
the number of items accommodated by an SBF. The nr is
equal to the capacity c for a full SBF and less than c for an
active SBF. In the rest of this paper, we use SBF to imply
counting Bloom filters for the sake of supporting the item
deletion operation.

3.1 Overview of Dynamic Bloom Filters

A DBF consists of s homogeneous SBFs. The initial value of
s is one, and the initial SBF is active. The DBF only inserts
items of a set into the active SBF, and appends a new SBF as
an active SBF when the previous active SBF becomes full.
The first step to implement a DBF is initializing the
following parameters: the upper bound on false match
probability of the DBF, the largest value of s, the upper
bound on false match probability of the SBF, the filter size m
of the SBF, the capacity c of the SBF, and number of hash
functions k of the SBF. As we will discuss further on in this
paper, the approaches used to initialize these parameters
are not identical in different scenarios. For more informa-
tion, readers may refer to Section 4.

Algorithm 1. Insert (x)

Require: x is not null

1: ActiveBF GetActiveStandardBF ðÞ
2: if ActiveBF is null then

3: ActiveBF CreateStandardBF ðm; kÞ
4: Add ActiveBF to this dynamic Bloom filter.

5: s sþ 1

6: for i ¼ 1 to k do

7: ActiveBF ½hashiðxÞ� ActiveBF ½hashiðxÞ� þ 1

8: ActiveBF:nr ActiveBF:nr þ 1

GetActiveStandardBF()

1: for j ¼ 1 to s do

2: if StandardBFj:nr < c then

3: Return StandardBFj
4: Return null

Given a dynamic set X with n items, we will first show
how a DBF is represented through a series of item insertion
operations. Algorithm 1 contains the details regarding the
process of the item insertion operation. It is clear that the
DBF should first discover an active SBF when inserting an
item x of X. If there are no active SBFs, the DBF creates a
new SBF as an active SBF and increments s by one. The DBF

inserts x into the active SBF and increments nr by one for
the active SBF. If X does not decrease after deployment,
only the last SBF of the DBF will be active, whereas the
other SBFs are full. Otherwise, these full SBFs may become
active if some items are removed from the set X.

It is convenient to represent X as a DBF by invoking
Algorithm 1 repeatedly. After achieving the DBF, we can
answer any set membership queries based on the DBF
instead of X. The detailed process is illustrated in
Algorithm 2, which uses an item x as input. If all the
hashjðxÞ counters are set to a nonzero value for 1 � j � k in
the first SBF, then the item x is a member of X. Otherwise,
the DBF checks its second SBF, and so on. In summary, x is
not a member of X if it is not found in all SBFs, and is a
member of X if it is found in any SBF of the DBF.

Algorithm 2. Query (x)

Require: x is not null
1: for i ¼ 1 to s do

2: counter 0

3: for j ¼ 1 to k do

4: if StandardBFi½hashjðxÞ� ¼ 0 then

5: break

6: else

7: counter counterþ 1

8: if counter ¼ k then

9: Return true

10: Return false

If an item x is removed from X, the corresponding DBF
must execute Algorithm 3 with x as the input in order to
reflect X as consistently as possible. First of all, the DBF
must identify the SBF in which all the hashjðxÞ counters are
set to a nonzero for 1 � j � k. If no SBF exists that satisfies
the constraint in the DBF, the item deletion operation will
be rejected since x does not belong to X. If there is only one
SBF satisfying the constraint, the counters hashjðxÞ for 1 �
j � k are decremented by one. If there are multiple SBFs
satisfying the constraint, then x may appear to be in
multiple SBFs of the DBF. Thus, it is impossible for the DBF
to know which is the right one. If the DBF persists in
removing membership information of x from it, the wrong
SBF may perform the item deletion operation with given
probability. The wrong item deletion operation destroys the
DBF and leads to, at most, k potential false negatives. To
avoid producing false negatives, the membership informa-
tion of such items is kept by the DBF, but removed from X.

Algorithm 3. Delete (x)

Require: x is not null

1: index null

2: counter 0

3: for i ¼ 1 to s do

4: if BF[i].Query(x) then

5: index i

6: counter counterþ 1

7: if counter > 1 then

8: break

9: if counter ¼ 1 then

10: for i ¼ 1 to k do

11: BF ½index�½hashiðxÞ� BF ½index�½hashiðxÞ� � 1

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 123

12: BF ½index�:nr BF ½index�:nr � 1

13: Merge()

14: Return true
15: else

16: Return false

Merge()

1: for j ¼ 1 to s do

2: if StandardBFj:n < c then

3: for k ¼ jþ 1 to s do

4: if StandardBFj:nr þ StandardBFk:nr < c

then

5: StandardBFj StandardBFj [StandardBFk
6: StandardBFj:nrþ StandardBFk:nr
7: Clear StandardBFk from the dynamic

Bloom filter.

8: Break

Furthermore, two active SBFs should be replaced by the
union of them if the addition of their nr is not greater than
the capacity c of one SBF. The union operation of counting
Bloom filters is similar to that of standard Bloom filters,
which performs the addition operation between counter
vectors instead of the logical or operation between bit
vectors. Note that there is at most one pair of SBFs which
satisfy the constraint of union operation after an item is
removed from the DBF.

The average time complexity of adding an item x to an SBF

and a DBF is the same: OðkÞ, where k is the number of hash

functions used by them. The average time complexities of

membership queries for SBF and DBF are OðkÞ and Oðk� sÞ,
respectively. The average time complexities of a member

deletion for SBF and DBF areOðkÞ andOðk� sÞ, respectively.

3.2 False Match Probability of Dynamic Bloom
Filters

In this section, we analyze the false positive probability of a

DBF under two scenarios. Items of X are not allowed to be

deleted from X in the first scenario, whereas they are

allowed to in the second scenario.
As discussed above, a DBF with s ¼ dn=ce SBFs can

represent a dynamic set X with n items. If we use the DBF

instead of X to answer a membership query, we may meet a

false match at a given probability. We will evaluate the

probability with which the DBF yields a false positive

judgment for an item x not in X. The reason is that all

counters of bfaddressðxÞ in any SBF might have been set to
a nonzero value by items of X.

If the cardinality ofX is not greater than the capacity of an
SBF (n � c), then the false match probability of the DBF can be
calculated according to (1) since the DBF is just an SBF.
Otherwise, the false match probability of the DBF can be
calculated in a straightforward way. The false positive
probability of the first s� 1 SBFs is fBFm;k;c, and that of the last
SBF is fBFm;k;nl with nl ¼ n� c� bn=cc. Then, the probability
that not all counters of bfaddressðxÞ in each SBF of the DBF are
set to a nonzero value is ð1� fBFm;k;cÞ

bn=ccð1� fBFm;k;nlÞ. Thus, the
probability that all the counters of bfaddressðxÞ in at least one
SBF of the DBF are set to a nonzero value can be denoted as:

fDBFm;k;c;n ¼ 1�
�
1� fBFm;k;c;c

�bn=cc�
1� fBFm;k;c;nl

�

¼ 1� ð1� ð1� e�k�c=mÞkÞbn=cc
�
1�

�
1� e�k�ðn�c�bn=ccÞ=m

�k�
:

ð3Þ

In the following discussion, we will use DBF, as well as

SBF to represent X, and observe the changing trend of

fDBFm;k;c;n and fBFm;k;n as n increases continuously. For 1 � n � c,
the false positive probability of DBF equals that of SBF. In

this case, the DBF becomes the SBF, and (3) also becomes

(1). For n > c, the false positive probability of the DBF

increases gradually with n, while that of the SBF increases

quickly to a high value, and then, slowly increases to almost

one. For example, when n reaches 10� c; fBFm;k;10�c becomes

about 100 times larger than fBFm;k;c, but fDBFm;k;c;10�c is about 10

times larger than fBFm;k;c. We can draw a conclusion from the

(1), (3), and Fig. 1 that DBF scales better than SBF after the

actual size of X exceeds the capacity of one SBF.

Furthermore, we use multiple DBFs and SBFs to

represent X, and study the trend of fBFm;k;n=f
DBF
m;k;c;n as the

cardinality n of X increases continuously. In our experi-

ments, we chose four kinds of DBFs using four SBFs, which

were all different with respect to size. For all four SBFs, the

number of hash functions is 7, and the predefined upper

bound on false positive probability is 0.0098. The experi-

mental results are shown in Fig. 2. It is obvious that all four

curves follow a similar trend. The ratio fBFm;k;n=f
DBF
m;k;c;n is a

function of the actual size n of X. For 1 � n � c, the ratio

equals 1. For n > c, the ratio quickly reaches to the peak due

to the slow increase in fDBFm;k;c;n, and the quick increase in

124 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 1. False positive probabilities of dynamic and standard Bloom
filters are functions of the actual size n of a dynamic set, where
m ¼ 1; 280, k ¼ 7, and c ¼ 133.

Fig. 2. The ratio of false positive probability of a standard Bloom filter to

the value of a DBF is a function of the actual size n of a dynamic set,

where k ¼ 7 and c ¼ 133.

fBFm;k;n, and then, decreases slowly. After n exceeds c, the DBF

with a different parameter m scales better than the

corresponding SBF. In fact, the value of m has no effect on

the trend of fBFm;k;n=f
DBF
m;k;c;n.

We know that fBFm;k;n and fDBFm;k;c;n are monotonically

decreasing functions of m according to (1) and (3). In other

words, fDBFm1;k;c;n
< fDBFm2;k;c;n

for m1 > m2. This means that the

curve of fDBFm1;k;c;n
is always lower than the curve of fDBFm2;k;c;n

as n

increases. In fact, so does fBFm;k;n. We also conduct experiments

to confirm this conclusion, and illustrate the result in Fig. 4.

3.3 Algebra Operations on Dynamic Bloom Filters

Given two different dynamic sets A and B, we can use

two dynamic Bloom filters DBF ðAÞ and DBF ðBÞ, or

two standard Bloom filters BF ðAÞ and BF ðBÞ to represent

them, respectively.

Definition 3 (Union of dynamic Bloom filters). Given the

same SBF, we assume that DBF ðAÞ and DBF ðBÞ use s1 �m
and s2 �m bit matrixes, respectively. DBF ðAÞ [DBF ðBÞ
could result in a ðs1 þ s2Þ �m bit matrix. The ith line vector

equals the ith line vector of DBF ðAÞ for 1 � i � s1, and the

ði� s1Þth line vector of DBF ðBÞ for s1 < i � ðs1 þ s2Þ.
Theorem 4. The false positive probability of DBF ðAÞ [
DBF ðBÞ is larger than that of DBF ðAÞ, as well as DBF ðBÞ.

Proof. Assume that DBF ðAÞ [DBF ðBÞ; DBF ðAÞ, and

DBF ðBÞ uses the same SBF with parameters m; k; c,

and the actual sizes of dynamic set A and B are na and

nb, respectively. The false positive probability of

DBF ðAÞ [DBF ðBÞ is:

fDBFm;k;c;naþnb ¼ 1�
�
1� fBFm;k;c

�ðbna=ccþbnb=ccÞ

�
�
1�

�
1� e�k�ðna�c�bna=ccÞ=m

�k�

�
�
1�

�
1� e�k�ðnb�c�bnb=ccÞ=m

�k�
:

ð4Þ

The false positive probabilities of DBF ðAÞ and

DBF ðBÞ are fDBFm;k;c;na
and fDBFm;k;c;nb

, respectively. In fact,
given the same k;m, and c, the value of (4) minus fDBFm;k;c;na

is larger than 0, and the value of (4) minus fDBFm;k;c;nb
is also

larger than 0. Thus, we can easily derive that the false

positive probability of DBF ðAÞ [DBF ðBÞ is larger than

that of DBF ðAÞ, as well as DBF ðBÞ. tu

Theorem 5. If the size of A and B is not zero and less than c, the

false positive probability of DBF ðAÞ [DBF ðBÞ is less than

that value of BF ðAÞ [BF ðBÞ.
Proof. The false positive probability of DBF ðAÞ [DBF ðBÞ

is denoted as fDBFm;k;c;naþnb , and that of BF ðAÞ [BF ðBÞ is

denoted as fBFm;k;naþnb . Because the size of A and B is less

than c, (4) can be simplified as (5). Let x ¼ e�k�na=m and

y ¼ e�k�nb=m, we can obtain (7), which denotes fBFm;k;naþnb
minus fDBFm;k;c;naþnb according to (1) and (5):

fDBFm;k;c;naþnb ¼ 1� ð1� ð1� e�k�na=mÞkÞ
ð1� ð1� e�k�nb=mÞkÞ;

ð5Þ

fðx; yÞ ¼ ð1� xyÞk þ ðð1� xÞð1� yÞÞk � ð1� xÞk

� ð1� yÞk;
ð6Þ

fðaÞ � fðdÞ
¼ fðdÞða� dÞ þ � � � þ fk�1ðdÞða� dÞk�1=ðk� 1Þ!
þ fkð�Þða� dÞk=k!; d < � < a;

ð7Þ

fðcÞ � fðbÞ ¼ fðcÞðc� bÞ þ � � � þ fk�1ðbÞðc� bÞk�1=ðk� 1Þ!
þ fkð�Þðc� bÞk=k!; b < � < c:

ð8Þ

Let a ¼ 1� xy, b ¼ ð1� xÞ � ð1� yÞ, c ¼ 1� x, and
d ¼ 1� y. Thus, b < c < a; b < d < a because of 0 < x <
1 and 0 < y < 1. If c < d, then we obtain (6) and (7)
according to the Taylor formula. fðzÞ ¼ zk; 0 < z < 1, is
a monotonically increasing function of z, and has a
continuous k-rank derivative. The ith derivative is a
monotonically increasing function for 1 < i � k. It is
obvious that a�D ¼ c� b; d < c < a; b < d < a. Thus,
each item of fðaÞ is larger than the corresponding item
of fðcÞ, and so, (7) is larger than 0. If c > d, the result
is the same. Theorem 5 is proven to be true. tu

On the other hand, we used MATLAB to calculate the

result of fBFm;k;naþnb minus fDBFm;k;c;naþnb . As shown in Fig. 3, the

false positive probability of DBF ðAÞ [DBF ðBÞ is also less

than that of BF ðAÞ [BF ðBÞ, even though the size of A and

B exceeds c.

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 125

Fig. 4. The false positive probabilities of four kinds of DBFs are functions
of the actual size n of a dynamic set, where k ¼ 7, and the predefined
threshold of false positive probability of each DBF is 0.0098.

Fig. 3. False positive probability of BF ðAÞ [BF ðBÞ minus that of
DBF ðAÞ [DBF ðBÞ is a function of size na of dynamic set A and nb of
set B, where m ¼ 1;280; k ¼ 7, and c ¼ 133.

3.4 Evaluations of Item Deletion Algorithm

3.4.1 Mathematical Analysis

As mentioned above, multiple SBFs tend to allocate
BfaddressðxÞ for an item x 2 X in a DBF. It is clear that only
one SBF ever truly represented x during its input process; the
other SBFs are false positives. The item deletion operation of
DBF always omits such items, keeping their set membership
information. The motivation is to prevent the DBF from
producing potential false negatives caused by an incorrect
item deletion. As a direct result of the item deletion
operation, queries of such items will yield false positives.

Recall thatX hasn items, and the DBF uses s ¼ dn=ceSBFs.
After the representation of X, we can consider the event
where a particular item x ofX appears to be in multiple SBFs.
If x was represented by one of the first s� 1 SBFs during the
item insertion process, the probability of this event can be
calculated by:

f1ðnÞ ¼ 1�
�
1� fBFm;k;c

�s�2�
1� fBFm;k;nl

�
: ð9Þ

If item x was represented by the sth SBF during the item
insertion process, this event means that at least one of the
first s� 1 SBFs produce a false positive judgment for x, and
the probability of this event can be calculated by:

f2ðnÞ ¼ 1�
�
1� fBFm;k;c

�s�1
: ð10Þ

It is easy to understand that the value of (10) is larger
than that of (9). We use (10) as an estimated upper bound
on the probability that x of X appears to be in multiple
SBFs, and then, achieve an estimated upper bound n�
f2ðnÞ on the number of such items which have more than
one Bloom filter address. Our experimental results show
that the real number is less than the estimated upper
bound. If all items of X are deleted, the DBF will try to
perform the same operation. However, the DBF cannot
guarantee deletion of all items due to its special item
deletion operation. In reality, the DBF still holds the
membership information of at most n� f2ðnÞ items. If
other items join X at the same time the original items are
deleted, the DBF can reflect the membership information
of all items of X and at most n� f2ðnÞ remaining items. It
is logical that the false positive probability of the DBF is
always larger than the theoretical value. Our experimental
findings show similar results, and the difference between
the real value and theoretical value is small. In other
words, the negative impact of the item deletion operation
on a DBF can be controlled at an accepted level.

3.4.2 Experimental Analysis

In this section, we will first describe the implementation of
k random and independent hash functions. Then, we will
compare the analytical model to the experimental results for
the number of items which have multiple Bloom filter
addresses. One critical factor in our experiments is creating
a group of k hash functions. In our experiments, they will be
generated as:

hiðxÞ ¼ ðg1ðxÞ þ i� g2ðxÞÞ mod m; ð11Þ

where g1ðxÞ and g2ðxÞ are two independent and random
integers in the universe with range f1; 2; . . . ;mg, and i

ranges from 0 to k� 1. We use the SDBM MersenneTwister

method to generate the two random integers for any item x.
Let the output of the SDBM Hash function as the seed of the
random number generator (RNG) MersenneTwister. Then,
the MersenneTwister will produce the two desired random
integers. The SDBM hash function seems to have a good
overall distribution for many different sets. It also works
well in situations where there are high variations in the
MSBs of the items in a set. The MersenneTwister is capable
of quickly producing very high-quality pseudorandom
numbers. This mechanism requires one hash function and
one random number generator to run k� 1 rounds of (14) in
order to generate a Bloom filter address BfadddressðxÞ for
item x. It provides a considerable amount of processing
reduction compared to using k actual hashes. Kirsch and
Mitzenmacher show that this method does not increase the
probability of false positives [29].

The multiple address problem causes some items to
remain in a DBF, even after they have been deleted from
set X. The ratio of the number of such items to the
cardinality of set X is denoted as r. Recall that f2ðnÞ is an
estimated upper bound on r based on mathematical
analysis. The experimental upper bound on r, and the real
value of r, are the average values achieved from 100 rounds
of simulations with different sets in each round.

Note that dynamic Bloom filters are designed to
represent many possible sets, and there are no benchmark
sets in the field of Bloom filters. Our experiments do not
seek particular sets, but simply use names of files at some
peers in a peer-to-peer trace as the data source. The P2P
trace is a snapshot of files that were shared by eDonkey
peers between 9 December 2003 and 2 February 2004. They
recorded 11,014,603 distinct files. We initialize 10 sets with
cardinality i� c for 1 � i � 10 using the trace data, and
then, implement 10 DBFs. In our experiment, the para-
meters of each SBF are m ¼ 1;280, k ¼ 7, and c ¼ 133. For
each DBF, the number of items possessing multiple Bloom
filter addresses from the corresponding set is determined,
and then, the experimental upper bound of r is calculated.
For each DBF, the item deletion algorithm mentioned above
is performed, and the ratio of the number of remaining
items to the original cardinality of the corresponding set is
the real value of r. Table 1 shows the experimental results
under different dynamic sets.

Fig. 5 shows that the real value of r is less than the
experimental upper bound, the estimated upper bound, and
the false positive probability of a DBF. All four curves
increase as the size of the dynamic set increases. The curve
for the real value r increases smoothly and maintains a low
level when the real size of the set is less than 10 times that of
the estimated threshold. On the other hand, the frequency

126 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

TABLE 1
Experimental Upper Bound and Real Value of r with c ¼ 133

of deleting all items from a set and its corresponding DBF is

often low, with the period usually being long.
Let’s consider the dynamic sets with n=c ¼ 10; 8; 5. We

first delete all items of those sets based on the item deletion

algorithm, and then, continuously add new items to the set.

It is easy to understand that the remaining items can

increase the false match probability of the DBF. Fig. 6 shows

that the more remaining items there are, the greater the false

positive probability will be. In practice, the frequency of

deleting all items from a set and its corresponding DBF is

very low; the false positive probability of a DBF is often

larger than the expected value, but still maintains a lower,

more stable level. On the other hand, the real capacity of a

DBF decreases with the number of those remaining items.

Applications can use the change in the real capacity as a

metric to evaluate the influence of the item deletion

operation and decide whether to represent the updated

set again. In the future, we will seek a better method to

solve the multiple address problem for an item.

3.5 Optimizations of Dynamic Bloom Filters

In this section, we consider cases in which applications do

not require DBFs to provide the item deletion operation. In

these cases, DBFs use SBFs as a component and may be

optimized from the following aspects. None of the

optimization strategies proposed below are suitable to

other cases in which DBFs use CBFs as a component.

3.5.1 Improvement of Item Insertion Operation

The item insertion algorithm proposed previously could be
optimized in two scenarios: First, sometimes it seems to a new
item of a normal set that it has been represented by a DBF,
even if it is not. In this case, the new item is still inserted into
an active SBF of the DBF. This kind of item may cause the DBF
to allocate unnecessary SBFs. Second, duplicate insertions of
an identical item in a multiset do not necessarily harm an SBF,
but they may cause a DBF to extend unnecessarily [30].
Solving this issue requires a membership query before each
insert; however, doing so increases the insertion complexity
from k toOðk� sÞ. Considering the additional computational
costs, DBFs should only adopt the improved item insertion
algorithm if the previous Algorithm 1 causes at least one
unnecessary SBF.

As discussed in Section 3.4, n� f2ðnÞ denotes an
estimation of the number of items which have multiple
Bloom filter addresses after all items are represented, and
are very similar to the experimental results. The experi-
mental results, as well as the estimation, are larger than the
number of items which already have at least one Bloom
filter address before they are represented in the two
scenarios. Thus, the improved algorithm should be used
only if:

ratio ¼ n� f2ðnÞ
c

� 1;

which implies that Algorithm 1 incurs at least one
unnecessary SBF. The ratio is a monotonically increasing
function of s and f , which denotes an upper bound on the
false match probability of an SBF. As shown in Fig. 7, the
value of ratio is always less than one if f � 0:01; s � 10, or
f � 0:001; s � 20; hence, it is not necessary to use the
improved algorithm. Under other conditions, Algorithm 1
should be replaced by the improved algorithm since the
former causes at least one unnecessary SBF.

The above discussions fail to consider the impact of a
multiset. If the distribution of duplicate items in a multiset
is known in advance, a multiset could be treated as a
normal set where those duplicate items act as identical
items in a normal set. They can also be analyzed in the same
way. Otherwise, we recommend adopting the improved
item insertion algorithm, which could be optimized by a
better method of storing dynamic Bloom filters, as dis-
cussed below.

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 127

Fig. 5. False positive probability of dynamic Bloom filters and the
percentage of data which have multiple Bloom filter addresses, where
m ¼ 1;280, k ¼ 7, and c ¼ 133.

Fig. 6. False positive probabilities of dynamic Bloom filters are functions
of the actual size n of a dynamic set and the remaining data, where
m ¼ 1;280, k ¼ 7, and c ¼ 133.

Fig. 7. The ratio of the number of items which have at least one Bloom
filter address before they are represented to the threshold c is a function
of s and the threshold f.

3.5.2 Compressed Dynamic Bloom Filters

In some distributed applications, an SBF at a node is usually
delivered to one or more nodes as a message. In this case,
there are the three metrics of SBFs we have seen so far: 1) the
computational overhead of an item query operation; 2) the
size of the filter in memory; and 3) the false match rate, a
fourth metric can be used: the size of a message used to
transmit an SBF across the network. The compressed Bloom
filters might significantly save bandwidth at the cost of larger
uncompressed filters and some additional computation to
compress and decompress the filter sent across the network.
In the idealized setting, using compression always reduces
the false positive probability by adopting a larger Bloom filter
size and fewer hash functions than an SBF uses. Interested
readers may obtain details concerning all of the theoretical
and practical issues of compressed Bloom filters in [18].

It is reasonable to compress a DBF by using compressed
Bloom filters instead of SBFs. The compressed DBFs and
MDDBFs could reduce both the transmission size and false
positive probability of the uncompressed versions, at the cost
of larger memory and additional computation overheads.

3.5.3 Approach for Storing Dynamic Bloom Filters

There are two ways of storing a dynamic Bloom filter with a
set number of s SBFs. These are referred to as the bit string
and bit slice methods, respectively, [31]. The bit string
approach stores the s SBFs dependently and sequentially.
Instead of storing a DBF as an s�m long bit strings, the bit
slice method stores a DBF as an m� s long bit slices. We
know that only a subset of the bit positions in each SBF need
to be examined on a query. One problem with the bit string
approach is that all s�m bits need to be retrieved on a
query. For the bit slice approach, only a fraction of the bit
slices need to be retrieved on a query.

4 PERFORMANCE EVALUATIONS

We use � to denote an upper bound on the false match
probability of an SBF representing a static set with fixed
cardinality n. Given� andn, the parameters k andm could be
optimized for the SBF with m ¼ dn� logð�Þ= logð0:61285Þe
and k ¼ dðm=nÞ ln 2e. Given � and m, the capacity c can be
optimized for the SBF with c ¼ dm� logð0:61285Þ= logð�Þe. It
is clear that the amount of memory allocated to an SBF
increases linearly with n. SBF and its variations are practical

approaches to represent static sets; however, most applica-
tions often encounter dynamic sets without fixed cardinality,
as well as static sets. According to the structure of DBFs, we
know that DBFs can represent dynamic sets as well as static
sets. In this section, we will first evaluate the performances of
DBFs and SBFs in stand-alone applications with three
different sets, and then, discuss the distributed applications
of DBFs.

4.1 Static Set with Fixed Cardinality

A dynamic set could be regarded as a series of static sets
over a sequence of discrete time. In this section, we use SBF
and DBF to represent a dynamic set, and compare them
from two aspects at any given discrete time. The SBF is
reconstructed according to its optimal configuration, as
determined by the set cardinality.

For a dynamic set X, let s be dn=ce, where n and c denote
the cardinality of X, and capacity of SBF used by DBF,
respectively. For a DBF representing the set, the formula of
its false positive probability is simplified as (12). For an SBF
representing that set, it calculates how many bits it must
consume in order to achieve the same false positive
probability as the DBF. Finally, we establish the relationship
between (1) and (12), and achieve (13) to denote the ratio of
the number of bits m1 used by an SBF, to the number of bits
s�m used by a DBF:

fDBFm;k;c;n ¼ 1� ð1� ð1� e�k�c=mÞkÞdn=ce; ð12Þ

m1

s�m ¼
�k� c

m� lnð1�
ffi
1� ð1� yÞsk

p
Þ
: ð13Þ

The following conclusions can be drawn from (13) and
Fig. 8. To obtain the same false match probability, SBF and
DBF use the same bits to represent X if n � c. However, the
SBF consumes fewer bits than the DBF if n > c. The
difference of bits used by DBF and SBF is small if s is not
too large.

Let us compare the false positive probability of an SBF
and a DBF which use the same bits to represent an identical
dynamic set. That is, an SBF is allowed to expand its size to
s�m, and also to rerepresent the dynamic set as the set
cardinality grows. In this case, the standard Bloom filter is
defined as NBF. The false match probability of an SBF could
be calculated according to (1). The false match probability of

128 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 8. The ratio of the size of a Bloom filter to that of a DBF is a function
of a non-negative integer, which denotes the ratio of n to c. The
experimental condition is the same as that in Fig. 3.

Fig. 9. False positive probabilities of dynamic and standard Bloom filters
are functions of the actual size of a dynamic set. Standard Bloom filters
can expand the filter size m to dn=ce �m. m ¼ 1;280, k ¼ 7, and c ¼ 133.

a DBF should still be (3). It is necessary to compare fDBFm;k;c;n

and fNBFm;k;c;n under this situation, and we have:

fNBFm;k;c;n ¼
�
1� e�k�n=ðm�dn=ceÞ

�k
: ð14Þ

The experimental results are shown in Fig. 9. We

conclude that fDBFm;k;c;n ¼ fNBFm;k;c;n � fBFm;k;c for n � c. For n >

c; fDBFm;k;c;n grows as the set cardinality increases, and fNBFm;k;c;n

fluctuates between i� c and ðiþ 1Þc, where i is any non-

negative integer. Let nx < c be any non-negative integer;

thus, fNBFm;k;c;nxþði�1Þ�c is not larger than fNBFm;k;c;nxþi�c. In fact,

fNBFm;k;c;n grows as the set cardinality increases in the whole

range, but the increase rate is slower than that of fDBFm;k;c;n.
In summary, to achieve the same false match probability,

an SBF never uses more bits than a DBF to represent any
static version of that dynamic set if the SBF is actively
reconstructed as the increase of set cardinality. It is clear
that the SBF produces large, even huge, overhead due to
frequent reconstructions. On the contrary, a DBF is not
required to be reconstructed if its false match probability is
controlled at an acceptable level with the increase of set
cardinality. Note that the false match probability of a DBF
might sometimes become too large to be tolerated by many
applications. It is necessary to occasionally reconstruct the
DBF. In the next section, we will compare DBFs and SBFs in
the whole lifetime of a dynamic set instead of comparing
them in a series of discrete time.

4.2 Dynamic Set with an Upper Bound on Set
Cardinality

In this section, we use SBF, as well as DBF to represent a
dynamic setX with an upper boundN on set cardinality. Let
� denote the upper bound on false match probability of the
SBF, as well as DBF. In many applications, the distribution of
set cardinality covers a large range [32], [33]. In such a
distribution, the upper bound is sometimes several orders of
magnitude larger than the mean or minimum cardinality.
Applications usually allocate a large number of bits for an
SBF at the outset with m ¼ dN � logð�Þ=logð0:61285Þe. These
bits are large enough for the SBF to accommodate all possible
items of X, while decreasing the space efficiency of the SBF.
DBF, however, allocates enough bits in an incremental and
on-demand fashion. A common objective of SBF and DBF is
to guarantee that the false match probability never exceeds
the �, and to make sure that they are not required to be
reconstructed as the set cardinality changes.

We now address the problem of designing a minimum
size DBF when the probability density function of the set
cardinality is known. We assume that s homogeneous SBFs
make up the DBF, and � denotes the upper bound on the
false match probability of each SBF. The overall false match
probability � for the DBF has to be apportioned among the
individual SBFs. According to (3), we know that
� ¼ 1� ð1� �Þs. As a result, we can derive the value of
parameter � with � ¼ 1� ð1� �Þ1=s.

The capacity of the DBF is N since at most N items of the
set are accommodated by it. Since the N items are allocated
to a certain number of s SBFs evenly, the capacity of the
ith SBF is defined as ci ¼ dN=se for 1 � i � s. In order to
solve this problem, we must determine the parameters m, k,
�, and s such that the false match probability DBF never
exceeds the upper bound �.

Let pi represent the probability that X has i items where

1 � i � N , i.e.,
PN

i¼1 pi ¼ 1. We associate the ith SBF of the

DBF with a ri, which implies an upper bound on the

probability that this SBF is used. Let r1 ¼ 1 and ri ¼PN
j¼c�ði�1Þþ1 pj for i ¼ 2; 3; . . . ; s, where c denotes the

capacity of any SBF. The expected number of bits used by

the DBF is upper bounded by
Ps

i¼1 m� ri. Recall that the

bits used by each SBF is m ¼ dðN=sÞ � logð�Þ= logð0:6185ÞÞe.
We formulate the problem to minimize

Ps
i¼1 ri � ðN=sÞ �

logð�Þ= logð0:6185Þ:

Minimize
Xs

i¼1

ri � ðN=sÞ � logð�Þ= logð0:6185Þ;

Subject to � ¼ 1� ð1� �Þ1=s; s > 0:

The optimized value of parameter s could be derived
from the solution of this optimization problem. Once we
have s, it can be used to calculate the false match probability
� and capacity c for these homogeneous SBFs, and then,
determine the parameters m and k according to the design
method of an SBF. The set cardinality distribution has a
direct impact on the result of this optimization problem. We
compare the minimized memory size of a DBF under five
different cardinality distributions through experiments:
normal distribution, uniform distribution, random Zipf
distribution, minimum Zipf distribution, and maximum
Zipf distribution.

The first two distributions have been widely used for
generating synthetic sets to emulate real sets [34]. In many
networking applications, it is observed that the set cardin-
ality at each node conforms to a Zipf distribution with a
long tail. There is a bijective mapping from the cardinality
values to the rank values. The Zipf distribution is called
random if any rank value is mapped to a random integer
over a range f1; . . . ; Ng, uniformly. It is called minimum if
the largest and second largest cardinality values are
mapped to the last and second to last ranks, respectively,
and so on. It is called maximum if the largest and second
largest cardinality values are mapped to the first and
second ranks, respectively, and so on.

As shown in Fig. 10, all five curves follow a similar trend
as s increases under the constraints that N ¼ 1;330 and
� ¼ 0:0098. The expected memory size of each curve first
decreases as s grows, and then, increases after the s exceeds

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 129

Fig. 10. The memory size of a DBF under different set cardinality

distributions: a uniform distribution, a normal distribution with u ¼ dN=2e
and �2 ¼ 20, and a Zipf distribution with 0.4 as parameter, where N ¼
1;330 and � ¼ 0:0098.

one or more keen points on the whole. It is clear that the
expected memory size under the maximum Zipf distribu-
tion is always larger than that under other distributions of
the same value of s. The reason is that the ri under the
maximum Zipf distribution is greater than that under other
distributions for 2 � i � s and any given value of s. For
each curve of DBF, the minimum memory size is achieved
when the value of s is equal to a keen point on the curve,
and is less than that of an SBF under the same constraints.

We then evaluate the impact of set cardinality on the
minimum memory size of the SBF and the five different
DBFs where � ¼ 0:0098. Fig. 11 shows that a DBF with
random Zipf distribution uses almost the same amount of
memory as a DBF with uniform distribution, while DBFs
with maximum and minimum Zipf distributions consume
the most and least memory among the five DBFs, respec-
tively. All DBFs, however, consistently outperform SBFs
independent of set cardinality, and the performance
difference seems to widen as set cardinality increases. In
experiments, we also focus on the influence of set cardin-
ality on the ratio of memory size of DBF to that of SBF. As
shown in Fig. 12, DBFs with maximum Zipf distribution,
random Zipf distribution, normal distribution, and mini-
mum Zipf distribution can save about 5, 19, 20, and 35
percent of the memory used by SBF, respectively. The
experimental results show that the set cardinality has a
trivial impact on the ratio of the memory size of DBF to that
of SBF, while the cardinality distributions have a major
impact on that metric.

Moreover, we evaluate the impact of false match
probability on the minimum memory size of SBF and the
five different DBFs, where N ¼ 13;300. Fig. 11 shows that
DBFs with maximum and minimum Zipf distributions
consume the most and least memory among the five DBFs,
respectively. The five DBFs, however, consistently outper-

form SBFs independent of false match probability. In
experiments, we also focus on the influence of the false
match probability on the memory size of DBF, and the ratio
of memory size of DBF to that of SBF. As shown in Fig. 13,
for each DBF, the memory size decreases as the false match
probability increases. As shown in Fig. 14, for each DBF, the
ratio increases as the false match probability increases;
however, it will always be less than 1 when the false match
probability is not larger than 5 percent. Actually, the ratio
for each DBF will reach, at most, 1 when the false match
probability exceeds 5 percent. That is, the five DBFs never
consume more memory than SBF, and save more memory
as the false match probability decreases.

Fig. 15 shows the impact of the Zipf parameter on
memory size under different Zipf distributions,2 where N ¼
1;330 and � ¼ 0:0098. We observe that DBFs with a
minimum Zipf distribution perform better as the parameter
value increases, and DBFs with a random Zipf distribution

130 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

Fig. 12. Ratio of memory size of DBF to that of SBF under different set

cardinality distributions.

Fig. 11. Memory size under different values of set cardinality. Fig. 13. Memory size under different false match probabilities.

Fig. 14. Ratio of memory size of DBF to that of SBF under different false
match probabilities.

Fig. 15. Impact of Zipf parameter on minimum memory size.

2. A large Zipf parameter means that the frequencies of some cardinality
values are much higher than others. A small Zipf parameter means that the
frequency of each cardinality value occurs just as often.

outperform SBFs almost independent of the Zipf parameter
value. If the Zipf parameter is less than 0.6, DBFs with a
maximum Zipf distribution also outperform SBFs; other-
wise, they perform worse than SBFs. Fig. 16 shows the
impact of standard deviation � on the memory size of DBFs
with normal distribution. We observe that DBFs with
normal distribution use more memory as the value of �
increases; however, they always outperform SBFs.

4.3 Dynamic Set without an Upper Bound on Set
Cardinality

In this section, we consider another scenario in which
applications do not know the upper boundN in advance. Let
� and � denote the left and right upper bounds on the false
match probability with � < �. In this scenario, applications
use a pair of � and � instead of a tight upper bound �. In
reality, applications expect that the false match probability is
less than �, and also tolerate an event that the false match
probability is sometimes greater than �, but less than �. A
common objective of DBF and SBF is to guarantee that the
false match probability never exceeds � as the set cardinality
changes. In order to satisfy this objective, the DBF and the
SBF may be reconstructed as the cardinality changes.

For a dynamic set, applications usually estimate a
threshold n0 of the set cardinality and use an initial SBF to
represent the dynamic set. In practice, it is very difficult to
estimate n0 in an accurate manner. One possible approach
is to trace the change of a dynamic data set, and then, to
investigate the statistic metric of set size before using DBF
to represent that data set. The parameters m and k for an
SBF are initialized with m ¼ dn0 � logð�Þ= logð0:61285Þe
and k ¼ dðm=n0Þ ln 2e. As shown in Fig. 1, the false match
probability exceeds � dramatically when the set cardin-
ality exceeds n0 gradually. Moreover, the false match
probability exceeds � once the set cardinality is greater
than n0 � logð� � �Þ. To handle this issue, n0 is assigned a
new value, which is at least greater than n0 � logð� � �Þ,
and then, the initial SBF is reconstructed using new
parameters to represent the dynamic set again. There exist
many policies to enlarge the value of n0. This paper does
not discuss this in detail since different policies have less
impact on the final results. If the false match probability
exceeds � again, the SBF is adjusted in the same way.

DBF first adopts an SBF to represent the dynamic set,
and may expand its capacity by allocating more SBFs as the
set cardinality increases. As shown in Fig. 1, the false match
probability of DBF increases slower than SBF when the set

cardinality gradually exceeds c. The false match probability
exceeds � once the set cardinality is greater than
n0 � dlogð1� �Þ= logð1� �Þe. To deal with this issue, c is
reassigned a new value, which is at least greater than
n0 � dlogð1� �Þ= logð1� �Þe, and the DBF is reconstructed
to represent the dynamic set again. This paper does not
discuss policies to enlarge n0 in detail for similar reasons. If
the false match probability of a new DBF exceeds � again,
the DBF must be adjusted in the same way.

In reality, it is unavoidable to reconstruct DBFs and SBFs
under specific conditions if the upper bound on set
cardinality is not known a priori. Fortunately, the adjust-
ment frequency of DBF is lower than that of SBF, especially
when the difference between � and � is large; that is, DBF
causes less overhead and is more stable than SBF due to
infrequent reconstructions as the increase of set cardinality.
Note that if the difference between � and � is very low, the
benefit of our approach using left and right bounds on the
false match probability becomes trivial. To address this rare
case, we use the approaches proposed in Section 4.2 after
estimating the cardinality distribution and initializing N ¼
n0 and � ¼ �.

4.4 Distributed Application Scenarios

In the above discussions, we considered SBF and DBF as
objects residing in memory in stand-alone applications. In
distributed applications, however, they are not just objects
that reside in memory, but objects that must be transferred
between nodes. In this case, all nodes are required to adopt
the same configuration of m; k, and hash functions in order
to guarantee compatibility and interoperability of SBF or
DBF between any pair of nodes.

We first consider the case in which the upper bounds N
and � on the set size and false match probability over
nodes, depending on the applications, are known a priori.
Nodes can construct a local, but homogeneous SBF with
m ¼ dN � logð�Þ= logð0:61285Þe and k ¼ dðm=NÞ ln 2e even
if these sets are different in size. This approach requires the
nodes with small sets to sacrifice more space to be in
accordance with those nodes with the large sets, hence
hurting the space efficiency and causing large transmission
overhead. As discussed in Section 4.2, DBF can address this
drawback of SBF if the distribution of set sizes over nodes is
known by the relevant application. The reason is that each
node allocates just enough memory to a DBF according to
its set size, and can satisfy the requirement of compatibility
and interoperability of DBF with other nodes. Although the
approaches proposed in Section 4.2 focus on stand-alone
applications, they are also suitable to distributed applica-
tions. The only difference is that the expected number of
bits used by a DBF is minimized in stand-alone applica-
tions, while the total number of bits used by DBFs at all
nodes is minimized in distributed applications. For more
information, we refer the reader to Section 4.2.

We then consider the case in which the upper bound
on set sizes over nodes is not known in advance. In this
scenario, as discussed in Section 4.3, applications impose
� and � (� < �) as a pair of upper bounds on the false
match probability over nodes, and estimate a threshold n0

on the upper bound on set sizes over nodes. If
applications use SBFs to represent sets over nodes, an

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 131

Fig. 16. Impact of standard deviation � on minimum memory size.

event where the size of the set at any node exceeds n0 �
logð� � �Þ will trigger a reconfiguration of its SBF, thereby
propagating a new configuration to other nodes and
reconstructing an SBF at each node. It is clear that
frequent reconfigurations lead to huge overhead and
destroy the stability of applications. One possible solution
to this problem is to overestimate n0 and allocate a larger
SBF at each node. This solution, however, hurts the space
efficiency of SBF, and causes large transmission overhead.
If applications use DBFs instead of SBFs, all nodes
reconfigure their DBFs only if the set size at any node
exceeds n0 � dlogð1� �Þ= logð1� �Þe. Note that the node
just expands its DBF without performing the consistency
operation over all nodes if its set size is greater than
n0 � logð� � �Þ, but less than n0 � dlogð1� �Þ= logð1� �Þe.
It is clear that the adjustment frequency of DBF is lower
than that of SBF, especially when the difference between
� and � is large. DBFs are more stable than SBFs with the
increase of set cardinality in this case. For more
information, we refer the reader to Section 4.3.

After discussing the use of approaches of DBF, we
consider a necessary procedure to update a DBF in
distributed applications. For each DBF, we adopt an
incremental update procedure by only sending those SBFs
which are changed. For each varied SBF, the procedure to
send updates first inspects if an old version of the SBF exists
in the previous DBF. If not, this must be an added SBF, and
the update is simply the SBF itself. Otherwise, an update is
sent by computing the xor of the current version with the
previous version. All updates can be compressed using
arithmetic coding before being sent reliably. At the other
end, the procedure to receive each updated SBF first
inspects if a previous SBF exists. If not, this must be an
added new SBF, and the update is simply stored in the
corresponding DBF. Otherwise, the updated SBF is treated
as an incremental one, and its previous SBF is modified
suitably by computing its bitwise xor with the new update.

5 CONCLUSION

A Bloom filter is an excellent data structure for succinctly
representing static sets with fixed cardinality in order to
support membership queries. However, it does not take
dynamic sets into account. In reality, most applications
often encounter dynamic data sets, as well as static sets. We
present dynamic Bloom filters to deal with dynamic sets, as
well as static sets. Dynamic Bloom filters not only inherit
the advantage of Bloom filters, but also have better features
than Bloom filters when dealing with dynamic sets. The
false match probability of Bloom filters increases exponen-
tially with the increase of the cardinality of a dynamic set,
while that of dynamic Bloom filters increases slowly
because it expands capacity in an incremental manner
according to the set cardinality.

Through comprehensive mathematical analysis, we
prove that dynamic Bloom filters use less expected memory
than Bloom filters when dealing with dynamic sets with
upper bounds on set cardinality, and that dynamic Bloom
filters are more stable than Bloom filters due to infrequent
reconstruction when addressing dynamic sets without
upper bounds on set cardinality. Moreover, the analytical
results hold in stand-alone applications as well as dis-
tributed applications. The only disadvantage is that

dynamic Bloom filters do not outperform Bloom filters in

terms of false match probability when dealing with a static

set with the same size memory.

ACKNOWLEDGMENTS

The authors would like to thank Maria Basta and Christian

Esteve for their constructive comments and careful proof-

reading. Deke Guo and Ye Yuan’s research is supported in

part by NSF China under Grant Nos. 60903206, 60873011,

60873089, and the National Basic Research Program of

China (973 Program) under Grant No. 2006CB303103. The

work of Jie Wu is supported in part by US National Science

Foundation under Grants CNS 0422762, CNS 0434533, and

CNS 0626240.

REFERENCES

[1] B. Bloom, “Space/Time Tradeoffs in Hash Coding with Allowable
Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] J.K. Mullin, “Optimal Semijoins for Distributed Database Sys-
tems,” IEEE Trans. Software Eng., vol. 16, no. 5, pp. 558-560, May
1990.

[3] L.F. Mackert and G.M. Lohman, “R	 Optimizer Validation and
Performance Evaluation for Distributed Queries,” Proc. 12th Int’l
Conf. Very Large Data Bases (VLDB), pp. 149-159, Aug. 1986.

[4] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485-509,
2005.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, and D.
Geels, “Oceanstore: An Architecture for Global-Scale Persistent
Storage,” ACM SIGPLAN Notices, vol. 35, no. 11, pp. 190-201, 2000.

[6] J. Li, J. Taylor, L. Serban, and M. Seltzer, “Self-Organization in
Peer-to-Peer System,” Proc. ACM SIGOPS, Sept. 2002.

[7] F.M. Cuena-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen,
“PlantP: Using Gossiping to Build Content Addressable Peer-to-
Peer Information Sharing Communities,” Proc. 12th IEEE Int’l
Symp. High Performance Distributed Computing, pp. 236-249, June
2003.

[8] S.C. Rhea and J. Kubiatowicz, “Probabilistic Location and
Routing,” Proc. IEEE INFOCOM, pp. 1248-1257, June 2004.

[9] T.D. Hodes, S.E. Czerwinski, and B.Y. Zhao, “An Architecture for
Secure Wide Area Service Discovery,” Wireless Networks, vol. 8,
nos. 2/3, pp. 213-230, 2002.

[10] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Proc. ACM Int’l Middleware Conf., pp. 21-40, June 2003.

[11] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel, “Bringing
Efficient Advanced Queries to Distributed Hash Tables,” Proc.
IEEE Conf. Local Computer Networks, pp. 6-14, Nov. 2004.

[12] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

[13] C.D. Peter and M. Panagiotis, “Bloom Filters in Probabilistic
Verification,” Proc. Fifth Int’l Conf. Formal Methods in Computer-
Aided Design, pp. 367-381, Nov. 2004.

[14] C. Jin, W. Qian, and A. Zhou, “Analysis and Management of
Streaming Data: A Survey,” J. Software, vol. 15, no. 8, pp. 1172-
1181, 2004.

[15] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for
Streaming Data Using Stable Bloom Filters,” Proc. 25th ACM
SIGMOD, pp. 25-36, June 2006.

[16] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” Proc. ACM
SIGCOMM, pp. 315-326, Sept. 2006.

[17] K. Li and Z. Zhong, “Fast Statistical Spam Filter by Approximate
Classifications,” Proc. Joint Int’l Conf. Measurement and Modeling of
Computer Systems, SIGMETRICS/Performance, pp. 347-358, June
2006.

[18] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, 2002.

132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 1, JANUARY 2010

[19] A. Kirsch and M. Mitzenmacher, “Distance-Sensitive Bloom
Filters,” Proc. Eighth Workshop Algorithm Eng. and Experiments
(ALENEX ’06), Jan. 2006.

[20] A. Kirsch and M. Mitzenmacher, “Building a Better Bloom Filter,”
Technical Report tr-02-05.pdf, Dept. of Computer Science,
Harvard Univ., Jan. 2006.

[21] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc.
23rd IEEE INFOCOM, pp. 1762-1773, Mar. 2004.

[22] S. Cohen and Y. Matias, “Spectral Bloom Filters,” Proc. 22nd ACM
SIGMOD, pp. 241-252, June 2003.

[23] R.P. Laufer, P.B. Velloso, and O.C.M.B. Duarte, “Generalized
Bloom Filters,” Technical Report Research Report GTA-05-43,
Univ. of California, Los Angeles (UCLA), Sept. 2005.

[24] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup
Tables,” Proc. Fifth Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA), pp. 30-39, Jan. 2004.

[25] F. Hao, M. Kodialam, and T.V. Lakshman, “Building High
Accuracy Bloom Filters Using Partitioned Hashing,” Proc.
SIGMETRICS/Performance, pp. 277-287, June 2007.

[26] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network
Applications of Dynamic Bloom Filters,” Proc. 25th IEEE
INFOCOM, Apr. 2006.

[27] M. Xiao, Y. Dai, and X. Li, “Split Bloom Filters,” Chinese J.
Electronic, vol. 32, no. 2, pp. 241-245, 2004.

[28] P.S. Almeida, C. Baquero, N.M. Preguiça, and D. Hutchison,
“Scalable Bloom Filters,” Information Processing Letters, vol. 101,
no. 6, pp. 255-261, 2007.

[29] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Perfor-
mance: Building a Better Bloom Filter,” Proc. 14th Ann. European
Symp. Algorithms (ESA ’06), pp. 456-467, Sept. 2006.

[30] J. Wang, M. Xiao, J. Jiang, and B. Min, “I-DBF: An Improved
Bloom Filter Representation Method on Dynamic Set,” Proc. Fifth
Int’l Conf. Grid and Cooperative Computing Workshops, pp. 156-162,
Sept. 2006.

[31] A. Kent and R.S. Davis, “A Signature File Scheme Based on
Multiple Organizations for Indexing Very Large Text Databases,”
J. Am. Soc. for Information Science, vol. 41, no. 7, pp. 508-534, 1990.

[32] M. Faloutsos, C. Faloutsos, and P. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. ACM SIGCOMM,
pp. 251-262, Aug. 1999.

[33] F. Hao, M. Kodialam, and T.V. Lakshman, “Incremental Bloom
Filters,” Proc. IEEE INFOCOM, 2008.

[34] S. Melnik and H.C. Molina, “Adaptive Algorithms for Set
Containment Joins,” ACM Trans. Database Systems, vol. 28,
pp. 56-99, 2003.

Deke Guo received the BE degree in industry
engineering from Beijing University of Aeronautic
and Astronautic, China, in 2001, and the PhD
degree in management science and engineering
from the National University of Defense Tech-
nology, Changsha, China, in 2008. He was a
visiting scholar in the Department of Computer
Science and Engineering, Hong Kong University
of Science and Technology, from January 2007
to January 2009. Currently, he is an assistant

professor of Information System and Management, National University
of Defense Technology, Changsha, China. His current research focuses
on peer-to-peer networks, Bloom filters, MIMO, data center networking,
wireless sensor networks, and wireless mesh networks. He is a member
of the ACM and the IEEE.

Jie Wu is the chair of and a professor in the
Department of Computer and Information
Sciences, Temple University. Prior to joining
Temple University, he was a program director at
the US National Science Foundation. His re-
search interests include wireless networks and
mobile computing, routing protocols, fault-toler-
ant computing, and interconnection networks.
He has published more than 450 papers in
various journals and conference proceedings.

He serves on the editorial board of the IEEE Transactions on Mobile
Computing. Dr. Wu was also general cochair for IEEE MASS 2006,
IEEE IPDPS 2008, and DCOSS 2009. He has served as an IEEE
Computer Society distinguished visitor and is the chairman of the IEEE
Technical Committee on Distributed Processing (TCDP). He is a fellow
of the IEEE.

Honghui Chen received the MS degree in
operational research and the PhD degree in
management science and engineering from the
National University of Defense Technology,
Changsha, China, in 1994 and 2007, respec-
tively. Currently, he is a professor of Information
System and Management, National University of
Defense Technology, Changsha, China. His
research interests are requirement engineering,

Web services, information grid, and peer-to-peer networks. He has
coauthored three books in the past five years.

Ye Yuan received the BS and MS degrees in
computer science from Northeastern University,
China, in 2004 and 2007, respectively. He is
currently working toward the PhD degree in the
Department of Computer Science, Northeastern
University. He is also a visiting scholar in the
Department of Computer Science and Engineer-
ing, Hong Kong University of Science and
Technology. His current research focuses on

peer-to-peer computing, graph databases, uncertain database, prob-
abilistic database, and wireless sensor networks.

Xueshan Luo received the BE degree in
information engineering from Huazhong Institute
of Technology, Wuhan, China, in 1985, and the
MS and PhD degrees in system engineering
from the National University of Defense Tech-
nology, Changsha, China, in 1988 and 1992,
respectively. He was a faculty member and an
associate professor at the National University of
Defense Technology from 1992 to 1994 and

from 1995 to 1998, respectively. Currently, he is a professor of
Information System and Management, National University of Defense
Technology. His research interests are in the general areas of
information system and operation research. His current research
focuses on architecture of information system.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUO ET AL.: THE DYNAMIC BLOOM FILTERS 133

